PostgreSQL Optimization Guide for Lemmy

Quick reference for optimizing PostgreSQL performance on Lemmy instances.

1. Find Your Config File

sudo -u postgres psql -c "SHOW config file;"

2. Check Current Settings

SELECT name, setting, unit
FROM pg_ settings

WHERE name IN ('shared buffers', 'work mem',

3. Memory Settings

Edit postgresql.conf Or use ALTER SYSTEM :

-- For 8GB RAM system:

'effective cache size',

ALTER SYSTEM SET shared buffers = '2GB'; -- 25% of RAM
ALTER SYSTEM SET effective cache size = '6GB'; -- 75% of RAM
ALTER SYSTEM SET maintenance work mem = '512MB';

ALTER SYSTEM SET work mem = '16MB';

-- For 16GB RAM system:

ALTER SYSTEM SET shared buffers = '4GB';

ALTER SYSTEM SET effective cache size = '12GB';
ALTER SYSTEM SET maintenance work mem = 'l1GB';
ALTER SYSTEM SET work mem = '32MB';

4. Autovacuum Tuning (Most Important)

ALTER SYSTEM SET autovacuum = onj;

ALTER SYSTEM SET autovacuum naptime = '30s';
ALTER SYSTEM SET autovacuum max workers = 4;
ALTER SYSTEM SET autovacuum vacuum_ threshold

= 50;

'maintenance

ALTER SYSTEM
ALTER SYSTEM
ALTER SYSTEM
ALTER SYSTEM
ALTER SYSTEM
ALTER SYSTEM

SET
SET
SET
SET
SET
SET

autovacuum vacuum_scale factor = 0.05;

autovacuum_analyze threshold = 50;
autovacuum _analyze scale factor = 0.025;
autovacuum vacuum cost delay = 'Zms';

autovacuum vacuum cost limit

autovacuum work mem =

5. WAL Settings

ALTER SYSTEM SET max wal size = '2GB';

ALTER SYSTEM SET min wal size = 'lGB';

1000;
'512MB';

ALTER SYSTEM SET checkpoint completion target = 0.9;

6. Apply Changes

Reload config

(for most settings)

sudo -u postgres psgql -c "SELECT pg reload conf();"

Restart required for some settings

sudo systemctl restart postgresqgl

7. Run Manual VACUUM

—-— Connect to Lemmy database

\c lemmy

-— Vacuum all tables

VACUUM ANALYZE;

-- Or target the activity table specifically

VACUUM ANALYZE activity;

8. Monitor Performance

-—- Check autovacuum activity

SELECT schemaname, relname, n_dead tup,

round (100.0 * n dead tup / NULLIF(n live tup + n_dead tup,

last vacuum, last autovacuum

FROM pg stat user tables

WHERE n dead tup > 0

n live tup,

(shared buffers, max wal size)

0),

2) AS dead

ORDER BY n_dead tup DESC LIMIT 10;

-- Check table sizes
SELECT schemaname, tablename,
Pg_size pretty(pg total relation size(schemaname||'.'||tablename)) AS size
FROM pg tables
WHERE schemaname NOT IN ('pg catalog', 'information schema')

ORDER BY pg total relation size(schemaname||'.']||tablename) DESC LIMIT 10;

Docker Compose Method

Add to your docker-compose.yml :

postgres:

image: postgres:15

command:
- "postgres"
— n_gn
- "shared buffers=2GB"
— w_gn
- "effective cache size=6GB"
- n_gn
- "maintenance work mem=512MB"
— n_gn
- "autovacuum max workers=4"
— w_gn

- "autovacuum vacuum_ scale factor=0.05"

Quick Config Generator

Use PGTune for customized settings based on your hardware.

Priority Order

1. Autovacuum tuning (biggest impact)
2. Memory settings

3. Manual VACUUM ANALYZE

4. Monitor for a few days

5. Fine-tune based on results

Note: Adjust RAM values based on your system. These examples assume dedicated
database servers.

